Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses.
نویسندگان
چکیده
OBJECTIVE To compare biodegradable magnesium phosphate cement (Mg-cement), calcium phosphate cement (Ca-cement), and no cement on bone repair, biocompatibility, and bone adhesive characteristics in vivo in horses. ANIMALS 8 clinically normal adult horses. PROCEDURES Triangular fragments (1-cm-long arms) were created by Y-shaped osteotomy of the second and fourth metatarsal bones (MTII and MTIV, respectively). Fragments were replaced in pairs to compare Mg-cement (MTII, n = 8; MTIV, 8) with Ca-cement (MTIV, 8) or with no cement (MTII, 8). Clinical and radiographic evaluations were performed for 7 weeks, at which time osteotomy sites were harvested for computed tomographic measurement of bone density and callus amount, 3-point mechanical testing, and histologic evaluation of healing pattern and biodegradation. RESULTS All horses tolerated the procedure without clinical problems. Radiographically, Mg-cement secured fragments significantly closer to parent bone, compared with Ca-cement or no treatment. Callus amount and bone remodeling and healing were significantly greater with Mg-cement, compared with Ca-cement or no cement. Biomechanical testing results and callus density among treatments were not significantly different. Significantly greater woven bone was observed adjacent to the Mg-cement without foreign body reaction, compared with Ca-cement or no cement. The Mg-cement was not fully degraded and was still adhered to the fragment. CONCLUSIONS AND CLINICAL RELEVANCE Both bone cements were biocompatible in horses, and Mg-cement may assist fracture repair by osteogenesis and fragment stabilization. Further studies are warranted on other applications and to define degradation characteristics.
منابع مشابه
Influence of bone cements on bone-screw interfaces in the third metacarpal and third metatarsal bones of horses.
OBJECTIVE To compare biomechanical strength, interface quality, and effects of bone healing in bone-implant interfaces that were untreated or treated with calcium phosphate cement (Ca-cement), magnesium phosphate cement (Mg-cement), or polymethylmethacrylate (PMMA) in horses. ANIMALS 6 adult horses. PROCEDURES 4 screw holes were created (day 0) in each third metacarpal and third metatarsal ...
متن کاملSystemic Effects of Experimental Spinal Cord Injury on Bone Healing in Rabbit
Bone loss after spinal cord injury leads to increased fragility of bone and subsequent risk for low-trauma fractures in the sublesional parts of the body. Although in such injuries upper limbs are normally innervated, bone loss may occur in the upper extremities. The present study was designed to determine the systemic effects of spinal cord injury on the fracture healing of upper limbs in rabb...
متن کاملEffect of a static magnetic field on bone healing in the dog: radiographic and histopathological studies
Although the promotional effects on bone healing of pulsed electromagnetic fields (PEMF) have beenwell demonstrated, the effects of static magnetic fields (SMF) remained unclear. In this study, effects of acustom-made magnetic wrap on radiographic and histopathological aspects of bone healing using a canineunstable osteotomy gap model were investigated. After an osteotomy of the midshaft radius...
متن کاملShort-term results after distal metatarsal osteotomies for hallux valgus, using a biodegradable Magnesium-implant
Introduction: Biodegradable implants can help to minimize the risk for hardware removal after forefoot surgery. Magnesiumalloy implants are a new material for this indication. Material and Method: 22 patients treated for symptomatic Hallux valgus deformity, by a distal metatarsal osteotomy, using a biodegradable Mg-Implant could be included in a prospective study. Results: One patient had a tra...
متن کاملEffects of Bone Marrow Mesenchymal Stem Cells-Conditioned Medium on Tibial Partial Osteotomy Model of Fracture Healing in Hypothyroidism Rats
Background: Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchymal stem cells (MSCs) secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium (CM) in hypothyroidism male rats after inducing bone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of veterinary research
دوره 68 4 شماره
صفحات -
تاریخ انتشار 2007